Cho f(x)=1/3(m-1)x³-mx²+(m+2)x-5. Tìm m để a)f'(x) lớn hơn hoặc bằng 0 với mọi x b)f'(x) nhỏ hơn hoặc bằng 0 với mọi x c)f'(x)=0 có 2 nghiệm cùng âm d)f'(x)=0 có nghiệm thỏa mãn x1+2x2=1
giải phương trình
a) \(5^x=4\)
b) \(5^{2-x}=8\)
c) \(\left(\dfrac{1}{3}\right)^{4+x}=243\)
d) \(\left(\dfrac{2}{3}\right)^x=\dfrac{3}{2}\)
giải các phương trình sau
a) \(2^{x^2-2x+1}=1\)
b) \(7^{x^2+7x}=5764801\)
c) \(6^{x^2+12x}=6^{7x}\)
d) \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
e) \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
giải phương trình
a) \(2^x=2^{3x-1}\)
b) \(7^{x-5}=49\)
c) \(3^{5x-3}=1\)
d) \(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\)
giải các phương trình sau
a) \(2^{x^2-1}=256\)
b) \(3^{x^2+3x}=81\)
c) \(2^{x^2-5x}=64\)
d) \(\left(\dfrac{1}{3}\right)^x=243\)
e) \(\left(\dfrac{1}{3}\right)^{x+5}=3^{2x+1}\)
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
giải phương trình
a) \(6^x=5\)
b) \(7^{3-x}=5\)
c) \(\left(\dfrac{3}{5}\right)^{x-2}=\dfrac{27}{125}\)
d) \(\left(\dfrac{4}{5}\right)^x=\dfrac{5}{4}\)
xác định đường tiệm cận đứng của đồ thị hàm số sau
a) \(y=\dfrac{x+3}{x^2-9}\)
b) \(y=\dfrac{x-5}{x^2-25}\)
c) \(y=\dfrac{x^2-4x+3}{x^2-1}\)
d) \(y=\dfrac{x^2-3x-4}{x^2-2x-3}\)
A) y= ( x+1) ( căn x - 1)
B) y= (x^2 -3) ( x^3 + 3x^2 - 5)
Tính đạo hàm
tính giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{5x^2+x^3+5}{4x^3+1}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2-x+1}{x^3+x-2x^2}\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2-x+1}{x^3+x-2x^2}\)