Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SC = 10√5. Gọi M,N lần lulư là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
A. d=3√5
B. d=√5
C. d=5
D. d=10
tính giá trị của biểu thức
a) \(log_5125\) và \(log_6216\)
b) \(log_{10}\dfrac{1}{10000}\) và \(log\sqrt{1000}\)
c) \(81^{log_35}\) và \(125^{log_52}\)
d) \(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}\) và \(\left(\dfrac{1}{625}\right)^{log_52}\)
Tinh đao hàm của các hàm số
a (m + n/x^2)^4
b y =(3x-2)^11.(1-2x)^21
c y = căn của 2x-1/2x+1
d y = x . căn của x^2 +4
tìm khoảng đồng biến nghịch biến
a) \(y=\left(5x-10\right)^4\)
b) \(y=\left(-x-1\right)\left(x+2\right)^4\)
c) \(y=\left(x^3-1\right)^3\)
d) \(y=\left(x^2-1\right)\left(x+2\right)\)
Bài 10. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng a * sqrt(3) . O là tâm hình vuông 1/ Chứng minh :a) (SAC) I (ABCD) b) (SAC) (SBD). 2 / a ) Tính d(S; (ABCD)) b) Tính d(O; (SCD)) 3/ Tính góc giữa:a) SC và (ABCD); b) (SAB) và (ABCD).
Một vật dao động điều hòa với biên độ 4 (cm). Quãng đường nhỏ nhất mà vật đi được trong 1 (s) là 20 (cm). Lấy z = 10. Hãy tính gia tốc lớn nhất của vật?
A. 4,82(m/s²). B. 248,42(cm/s²). C. 3,96(m/s²). D. 284,44(cm/s²).
helpppp
Cho hàm số f(n)= 1+3+6+10+...+ n ( n + 1 ) 2 ( n ∈ N * ) .
Biết lim f ( n ) ( 3 n + 1 ) ( 5 n 2 + 2 ) = a b ( a , b ∈ Z ) phân số này tối giản. Giá trị b - 5a là
A.50
B.45
C.85
D.60
dãy số nào là 1 cấp số cộng ( giải chi tiết )
a) 10; 5; 0; -4; -9; -14
b) -2; 5; 12; 19; 29
c) -3; -3; -3; -3; -3
d) \(u_n=n^2\)
e) \(u_n=1-4n\)
f) \(u_n=2-5n\)
Bài 2. (1 điểm) Trong hình sau, khi được kéo ra khơi vị trí cân bằng ờ điểm $O$ và buông tay, lực đàn hồi của lò xo khiến vật $A$ gắn ở đầu của lò xo dao động quanh $O$.
Tọa độ $s$ cm của $A$ trên trục $Ox$ vào thời điểm $t$ (giây) sau khi buông tay được xác định bởi công thức $s=10 \sin \left(10 t+\dfrac{\pi}{2}\right)$. Vào các thời điểm nào thì $s=-5 \sqrt{3} $ cm?
MỌI NGƯỜI GIÚP MÌNH MÔN TIN VỚI Ạ!
Cho dãy số (a1, a2, a3, ..., an) là một hoán vị bất kỳ của tập hợp (1, 2, 3, ..., n). Dãy số (b1, b2, b3, ..., bn) gọi là nghịch thế của dãy a nếu bi là số phần tử đứng trước số i trong dãy a mà lớn hơn i.
Ví dụ:
Dãy a là: 3 2 5 7 1 4 6
Dãy b là: 4 1 0 2 0 1 0
a. Cho dãy a, hãy xây dựng chương trình tìm dãy b.
b. Cho dãy b, xây dựng chương trình tìm dãy a.
Dữ liệu vào: Trong file NGICH.INP với nội dung:
-Dòng đầu tiên là số n (1 <= n <= 10 000).
-Các dòng tiếp theo là n số của dãy a, mỗi số cách nhau một dấu cách,
-Các dòng tiếp theo là n số của dãy b, mỗi số cách nhau bởi một dấu cách.
Dữ liệu ra: Trong file NGHICH.OUT với nội dung:
-N số đầu tiên là kết quả của câu a
-Tiếp đó là một dòng trống và sau đó là n số kết quả của câu b (nếu tìm được dãy a).