Pt hoành độ giao điểm:
\(x^2=-x+6\Leftrightarrow x^2+x-6=0\) (1)
Do \(ac=-6< 0\) nên (1) có 2 nghiệm phân biệt
Hay (d) và (P) cắt nhau tại 2 điểm phân biệt
Pt hoành độ giao điểm:
\(x^2=-x+6\Leftrightarrow x^2+x-6=0\) (1)
Do \(ac=-6< 0\) nên (1) có 2 nghiệm phân biệt
Hay (d) và (P) cắt nhau tại 2 điểm phân biệt
Cho hàm số y= - x 2 (P) và đường thẳng (d): y = 2mx - 5
b) Chứng tỏ rằng trên mặt phẳng Oxy đường thẳng (d) và parabol (P) luôn cắt nhau tại hai điểm phân biệt. Tìm tọa độ hai giao khi m = 2.
Trong mặt phẳng tọa độ Oxy cho Parabol (P): y = x 2 và đường thẳng (d): y = - 2 3 m + 1 + 1 3 (m là tham số). Trong trường hợp (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ giao điểm là x 1 ; x 2 . Đặt f ( x ) = x 3 + ( m + 1 ) x 2 – x khi đó?
A. f ( x 1 ) − f ( x 2 ) = ( x 1 − x 2 ) 3
B. f ( x 1 ) − f ( x 2 ) = 1 2 ( x 1 − x 2 ) 3
C. f ( x 1 ) − f ( x 2 ) = - ( x 1 − x 2 ) 3
D. f ( x 1 ) − f ( x 2 ) = - 1 2 ( x 1 − x 2 ) 3
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Cho hai đường thẳng y=x+\(\sqrt{3}\) và y=2x+\(\sqrt{3}\).Trên cùng một mặt phẳng tọa độ Oxy,vị trí tương đối của hai đường thẳng là
A.trùng nhau B.cắt nhau tại điểm có tung độ là \(\sqrt{3}\)
C.song song D.cắt nhau tại điểm có hoành độ là \(\sqrt{3}\)
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số)
1) Chứng minh rằng với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.
2) Gọi giao điểm của đường thẳng (d) và parabol (P) là A và B. Chứng minh tam giác OAB vuông.
Trong mặt phẳng tọa độ Oxy cho parabol (P):y=x² 1.Viết phương trình đường thẳng (d) đi qua điểm M(0;m-1) và có hệ số góc bằng 3. 2.Tìm các giá trị của m để (P) và (d) cắt nhau tại hai điểm phân biệt 3.Khi m=3, tìm tọa độ giao điểm của (d) và (P).Vẽ (d) và (P) lên cùng hệ trục tọa độ.
Cho đường thẳng y = ax + b(d) và parabol y = - x ^ 2 * (P) . Biết rằng (d) và (P)cái nhau tại hai điểm A và B có hoành độ lần lượt băng - I vh2 A. m=5 II. TỰ LUẬN a) Xác định tọa độ các điểm A, B b) Xác định a,b c)Vẽ (d)và (P) trên cùng mặt phẳng tọa độ
Cho parabol (P): y=x2 và đường thẳng d: y=2x−3+m2(x là ẩn, m là tham số) a) Xác định m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng tọa độ Oxy. Tìm m sao cho y1-y2=8
Cho parabol ( P ) : y = x2 và đường thẳng ( d ) : y = ( 2 -m )x + m2 + 1 .
a/ Vẽ parabol ( P ) .
b/ Chứng minh rằng parabol ( P ) và đường thẳng ( d ) luôn cắt nhau tại hai điểm phân biệt A và B .