a: \(=4x-4x\sqrt{2}-2x\sqrt{2}+2x=6x-6x\sqrt{2}\)
b: \(=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)
a: \(=4x-4x\sqrt{2}-2x\sqrt{2}+2x=6x-6x\sqrt{2}\)
b: \(=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)
Khai triển và rút gọn các biểu thức (với x và y không âm)
a) (1-\(\sqrt{x}\))(1+\(\sqrt{x}\)+x)
b) (\(\sqrt{x}\)+2)(x-2\(\sqrt{x}\)+4)
c) (\(\sqrt{x}\)-\(\sqrt{y}\))(x+y+\(\sqrt{xy}\))
d) (x+\(\sqrt{y}\))(x\(^2\)+y-x\(\sqrt{y}\))
Khai triển và rút gọn các biểu thức ( với x và y ko âm)
a) (1-\(\sqrt{x}\))(1+\(\sqrt{x}\)+x)
b) ( \(\sqrt{x}\)+2)(x-2\(\sqrt{x}\)+4)
c) ( \(\sqrt{x}\) - \(\sqrt{y}\))(x+y+\(\sqrt{xy}\))
d) (x+\(\sqrt{y}\))(x\(^2\)+y-x\(\sqrt{y}\))
Rút gọn:
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\) (với x > 0, y > 0)
b.\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( với x > 0 )
c. \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( với x > -2)
cho biểu thức A = \(\text{[}\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x+\sqrt{y}}}\text{]}:\text{[}\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\text{]}\)
a, Rút gọn A
b, Tính giá trj B khi x=3 , y=4+2\(\sqrt{3}\)
cho biểu thức A=\(\frac{x+y-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
a)tìm ĐKXĐ để A có nghĩa, rút gọn biểu thức A
b)tính giá trị của biểu thức A với x=\(9-4\sqrt{2}\) và y=\(6+4\sqrt{2}\)
Cho biểu thức
A= \(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3-\sqrt{y^3}}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a, Rút gọn A
Chứng minh A>0
rút gọn các biểu thức sau
a(\(\sqrt{5-2\sqrt{6}}+\sqrt{2}\)).\(\sqrt{3}\)
b)\(\frac{2-\sqrt{2}}{\sqrt{2}}\)
c)\(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}\)
Rút gọn các biểu thức:
a) \(\sqrt{4-2\sqrt{3}}\)-\(\sqrt{3}\)
b) \(\sqrt{11+6\sqrt{2}}\)-3+\(\sqrt{2}\)
c) \(\sqrt{9x^2}\)-2x với x<0
d) x-4+\(\sqrt{16-8x+x^2x^2}\) với x>4
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303