Hai đoạn AB,CD bằng nhau và trượt trên các cạnh Ox, Oy của góc xOy, A thuộc đoạn OD ; I, J theo thứ tự là trung điểm của AC, BD. Chứng minh thứ tự là trung điểm của AC, BD. chứng minh rằng IJ luôn song song với phân giác của góc xOy và độ dài IJ không đổi
Trong mặt phẳng tọa độ Oxy cho ba điểm A (1,3),B(-1,-2),C(1,5). Tọa độ D trên trục Ox sao cho ABCD là hình thang có hai đáy AB và CD là
Cho hbh ABCD có A(-1:-2), B(3:2), C(4;-1)
a) Tìm tọa độ đỉnh D
b) Tìm giao điểm I của đường thẳng AB với trục Ox
c) Tìm giao điểm E của đường thẳng y=2
Cho tứ giác ABCD. Hai điểm M, N thay đổi trên các cạnh AB, CD sao cho:
\(\dfrac{AM}{AB}=\dfrac{CN}{CD}\)
tìm tập hợp các trung điểm I của MN
Trong hệ trục oxy, cho điểm A(-1,1) và đường thẳng D:2x-4y+1=0
1)Viết phương trình tổng quát của đường thẳng d đi qua A và song song với đường thẳng D
2)Tìm tọa độ điểm M trên đường thẳng D sao cho AM nhỏ nhất
1. Trong mặt phẳng Oxy, có trọng tâm G(1,-1), M(2,1) và N(4,-2) lần lượt là trung điểm của AB, BC. Tìm tọa độ điểm B
2. Trong mặt phẳng Oxy, cho A(1,3), B(-2,2). Biết đường thẳng AB cắt trục tung tại điểm M(0,b). Giá trị b thuộc khoảng nào
3. Trong mặt phẳng tọa độ Oxy, cho A thỏa vecto OA= 2vecto i + 3vecto j. Tọa độ điểm A là
4. Trong mặt phẳng Oxy, cho vecto x=(1,2), vecto y=(3,4), vecto z=(5,-1). Tọa độ vecto u = 2vecto x + vecto y - vecto z là
5. Trong mặt phẳng tọa độ Oxy, cho M(2,-3), N(4,7). Tọa độ trung điểm I của đoạn thẳng MN là
6. Cho vecto x=(-4,7) và hai vecto a=(2,-1), b=(-3,4). Nếu vecto x = m vecto a + n vecto b thì m, n là cặp số nào
Cho hình thang ABCD có đáy AB=a, CD =2a. Gọi M,N lần lượt là trung điểm AD và BC. Tính độ dài của vecto MN+ vecto BD + vecto CA
Bài 2 Trong mp Oxy , cho 3 điểm A B C 2;0 , 2;4 , 3;2 . a) Chứng minh A B C , , là 3 đỉnh của 1 tam giác b) Toạ độ trọng tâm G của ABC ; tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành c) Tìm tọa độ điểm I sao cho IA IB IC 3 2 0 . Tìm tọa độ giao điểm của hai đường thẳng AG và DI (với G, D ở câu b). d) Tìm tọa độ điểm M thuộc Ox sao cho MA MB MC 3 2 đạt giá trị nhỏ nhất
Cho hình thang cân ABCD có đáy lớn CD=3 , đáy nhỏ AB=1 và AD=BC=√5 , gọi I là giao điểm của 2 đường chéo hình thang , gọi H là trực tâm của tam giác BCD
Phân tích vectơ HI theo vectơ AB và AD