\(A=\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\\ =\dfrac{2-\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2-\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{4-2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2}{2+\sqrt{x}}\\ A=\dfrac{1}{3}\Rightarrow\dfrac{2}{2+\sqrt{x}}=\dfrac{1}{3}\Rightarrow\sqrt{x}+2=6\\ \Rightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)