Ta có : \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
VÌ \(9>8\Rightarrow3^{200}>2^{300}\)
Ta có: 2300 =8100
3200 =9100
=> 8100 < 9100 => 2300 < 3200
Ta có :
3200=(32)100=9100
2300=(23)100=8100
=>3200>2300(9100>8100)
Ta có
3200=9100
2300=8100
vì 9100>8100
nên 3200>2300
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
-Ta có: UWCLN (200;300) = 100
- Vì: 3200 = 32.100 = 9100
2300 = 23.100 = 8100
=> 9100 > 8100
Vậy 3200 > 2300