Gọi A, B lần lượt là giao điển của \(\left(d\right)\) với 2 trục \(Ox,Oy\)
Ta có : \(A\left(\dfrac{-2}{2m-1},0\right);B\left(0,2\right)\)
Gọi OH là khoảng cách từ \(\left(d\right)\) đến gốc O
Áp dụng hệ thức lượng trong tam giác vuông :
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\dfrac{-2}{2m-1}\right)^2}+\dfrac{1}{2^2}=\dfrac{\left(2m-1\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow4=\left(2m-1\right)^2+1\)
\(\Leftrightarrow4=4m^2-4m+1+1\)
\(\Leftrightarrow4m^2-4m-2=0\)
\(\Leftrightarrow2m^2-2m+1=0\)
\(\Leftrightarrow\) Ko tìm đc m
PT giao Ox và Oy:
\(\left\{{}\begin{matrix}y=0\Rightarrow x=\dfrac{2}{1-2m}\Rightarrow A\left(\dfrac{2}{1-2m};0\right)\Rightarrow OA=\dfrac{2}{\left|2m-1\right|}\\x=0\Rightarrow y=2\Rightarrow B\left(0;2\right)\Rightarrow OB=2\end{matrix}\right.\)
Gọi H là chân đường cao từ O đến \(\left(d\right)\Rightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-1\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{\left(2m-1\right)^2+1}{4}=1\\ \Leftrightarrow\left(2m-1\right)^2+1=4\\ \Leftrightarrow\left(2m-1\right)^2=3\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{3}}{2}\\m=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)