Thay \(x=1\) vào hàm số \(y=ax^2+bx+c=0\), ta có:
\(y=a.1^2+b.1+c=0\\ \Rightarrow y=a+b+c=0\\ \Rightarrow a+c=0-b\\ a+c=-b\)
Thay \(a+c=-b\) vào \(\dfrac{a+c}{b}\), ta có:
\(\dfrac{a+c}{b}=-\dfrac{b}{b}=-1\)
Vậy: \(\dfrac{a+c}{b}=-1\)
khi x=1 thi \(a\left(1\right)^2+b\left(1\right)+c=0\Rightarrow a+b+c=0\)
do đó a+c=-b
\(\dfrac{a+c}{b}=\dfrac{-b}{b}=-1\)