Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a(bz-cy)}{a^2}=\frac{b(cx-az)}{b^2}=\frac{c(ay-bx)}{c^2}\)
\(=\frac{a(bz-cy)+b(cx-az)+c(ay-bx)}{a^2+b^2+c^2}\)
\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)
\(\Rightarrow \left\{\begin{matrix} bz-cy=0\\ cx-az=0\\ ay-bx=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} bz=cy\\ cx=az\\ ay=bx\end{matrix}\right.\)
\(\Leftrightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Do đó ta có đpcm.