cho a,b,c là các số thực khác 0 . Tìm các số thực x,y,z khác 0 thỏa mãn :
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) với a,b,c,x,y,z \(\ne\)0. Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Biết\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Chứng minh rằng: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Help me!!!
cho các số thực a,b,c khác 0 thỏa mãn a+b+c=2;\(a^2+b^2+c^2=4\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Chứng minh rằng xy+yz+zx=0
Mọi người ơi iups mk với chiều thi rồi...
Biết \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) với a,b,c≠0
CMR : \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).CMR:\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha