Bài 1:
a: \(7^{100}=7^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
mà 7<8
nên \(7^{100}< 2^{300}\)
b: \(25^{25}=\left(5^2\right)^{25}=5^{50}\)
\(125^{17}=\left(5^3\right)^{17}=5^{3\cdot17}=5^{51}\)
mà 50<51
nên \(25^{25}< 125^{17}\)
c: \(8^{25}=\left(2^3\right)^{25}=2^{75}\)
\(16^{19}=\left(2^4\right)^{19}=2^{76}\)
mà 75<76
nên \(8^{25}< 16^{19}\)
d: \(121^{10}=\left(11^2\right)^{10}=11^{20}\)
\(1331^7=\left(11^3\right)^7=11^{21}\)
mà 20<21
nên \(121^{10}< 1331^7\)
Bài 1:
a. a) 7100 và 2300
Ta có: 2300 = ( 23)100= 8100 > 7100
=> 7100 < 2300
b) 2525 và 12517
Ta có: 2525 = (52)25= 550
12517 = ( 53)17 = 551 > 550
=> 2525 < 12517
c) 825 và 1619
Ta có: 825 = (23)25= 275
1619= (24)19= 276 > 275
=> 825<1619
d) 12110 và 13317
Ta có: 12110 = ( 112)10 = 1120
13317 = (113)7 = 1121 > 1120
=> 12110<13317
` bài dưới tương tự`