Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Gọi x 1 , x 2 là hai nghiệm nguyên dương của bất phương trình log 2 1 + x < 2 . Tính giá trị của biểu thức P = x 1 + x 2
A. P = 3
B. P = 4
C. P = 5
D. P = 6
Cho phương trình 1 2 log 2 ( x + 2 ) + x + 3 = log 2 2 x + 1 x + ( 1 + 1 x ) 2 + 2 x + 2 , gọi S là tổng tất cả các nghiệm dương của nó. Khi đó, giá trị của S là.
A. - 2
B. 1 - 13 2
C. 1 + 13 2
D. Đáp án khác
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Tập nghiệm của bất phương trình log 2 ( x + 1 ) - 2 log 4 ( 5 - x ) < 1 - log 2 ( x - 2 ) là
A. (3;5)
B. (2;3)
C. (2;5)
D. (-4;3)
Cho phương trình 1 2 log 2 ( x + 2 ) + x + 3 = log 2 2 x + 1 x + ( 1 + 1 x ) 2 + 2 x + 2 , gọi S là tổng tất cả các nghiệm dương của nó. Khi đó, giá trị của S là
A. S = - 2
B. S = 1 - 13 2
C. S = 1 + 13 2
D. Đáp án khác
tìm các giá trị nguyên của x nghiệm đúng cả hai bất phương trình sau:
\(\frac{x+4}{5}-x+4>\frac{x}{3}-\frac{x-2}{2}\)
\(x-\frac{x-3}{8}>=3-\frac{x-3}{12}\)
Cho hàm số y = f (x) liên tục trên R có đồ thị như hình vẽ.
Biết trên ( - ∞ ; - 3 ) ∪ ( 2 ; + ∞ ) t h ì f ' ( x ) > 0 . Số nghiệm nguyên thuộc (-10; 10) của bất phương trình [ f ( x ) + x - 1 ] ( x 2 - x - 6 ) > 0 là
A. 9
B. 10
C. 8
D. 7
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x . Biết rằng x = 1 là một nghiệm của bất phương trình
A. S = − 2 ; 0 ∪ 1 3 ; 3
B. S = − 1 ; 0 ∪ 1 3 ; 2
C. S = − 1 ; 0 ∪ 1 3 ; 3
D. S = − 1 ; 0 ∪ 1 ; 3