Gọi d là khoảng cách hai tâm của hai đường tròn (O; R) và (O', r) (0 < r < R). Để (O) và (O') cắt nhau thì:
A. R – r < d < R + r
B. d = R – r
C. d > R + r
D. d = R + r
Gọi d là khoảng cách 2 tâm của (O, R) và (O', r) với 0 < r < R. Để (O) và (O') tiếp xúc trong thì:
A.R - r < d < R + r
B. d = R - r
C. d > R + r
D. d = R + r
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài với nhau tại A. Vẽ tiếp tuyến chung ngoài BC với B ∈ (O), C ∈ (O'). Đường vuông góc với OO' kẻ từ A cắt BC ở M
a, Tính MA theo R và r
b, Tính diện tích tứ giác BCO'O theo R và r
c, Tính diện tích ∆BAC theo R và r
d, Gọi I là trung điểm của OO'. Chứng minh rằng BC là tiếp tuyến của đường tròn (I; IM)
Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Cho 2 đường tròn (O;R) và (O,r) đồng tâm O, r<R. Điểm M nằm ngoài (O;R). Qua M vẽ 2 tiếp tuyến với (O;r). Một đường cắt (O;R) tại A và B ( A nằm giữa M và B), một đường cắt (O;R) tại VC và D (C nằm giữa M và D). c/m cung AB = cung CD
Cho 2 đường tròn (O;R) và (O,r) đồng tâm O, r<R. Điểm M nằm ngoài (O;R). Qua M vẽ 2 tiếp tuyến với (O;r). Một đường cắt (O;R) tại A và B ( A nằm giữa M và B), một đường cắt (O;R) tại VC và D (C nằm giữa M và D). c/m cung AB = cung CD
Cho hai đường tròn (O; R) và (O'; r) cắt nhau tại A và B (R > r). Gọi I là trung điểm của OO'. Kẻ đường thẳng vuông góc với IA tại A, đường thẳng này cắt các đường tròn (O; R) và (O'; r) theo thứ tự C và D (khác A).
Chứng minh rằng AC = AD.