Gọi d là khoảng cách hai tâm của hai đường tròn (O, R) và (O', r) (với 0 < r < R). Để (O) và (O') ở ngoài nhau thì
A. d < R – r
C. d = R + r
B. d = R – r
D. d > R + r
Gọi d là khoảng cách hai tâm của hai đường tròn (O; R) và (O', r) (0 < r < R). Để (O) và (O') cắt nhau thì:
A. R – r < d < R + r
B. d = R – r
C. d > R + r
D. d = R + r
Cho 2 đường tròn đồng tâm (O;R) và ( O;r). Dây AB cảu (O;R) tiếp xúc với(O;r).Trên tia AB lấy điểm E sao cho B là trung điểm đoạn AE. Từ E vẽ tiếp tuyển thứ 2 của (O;r) cắt (O;R) tại C và D( D ở giữa E và C)
a. CM: EA=EC
b. CM: EO vuông góc BD
c. Điểm E chạy trên đường nào khi dây AB của (O;R) thay đổi nhưng luôn tiếp xúc với (O;r)?
Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Cho 2 đường tròn (O;R) và (O,r) đồng tâm O, r<R. Điểm M nằm ngoài (O;R). Qua M vẽ 2 tiếp tuyến với (O;r). Một đường cắt (O;R) tại A và B ( A nằm giữa M và B), một đường cắt (O;R) tại VC và D (C nằm giữa M và D). c/m cung AB = cung CD
Cho 2 đường tròn (O;R) và (O,r) đồng tâm O, r<R. Điểm M nằm ngoài (O;R). Qua M vẽ 2 tiếp tuyến với (O;r). Một đường cắt (O;R) tại A và B ( A nằm giữa M và B), một đường cắt (O;R) tại VC và D (C nằm giữa M và D). c/m cung AB = cung CD
Cho (O;R) và d cắt (O;R) tại 2 điểm A, B. Gọi M là điểm trên d và nằm ngoài (O;R). Qua M kẻ tiếp tuyến MC, MD với (O) C, D thuộc (O;R). Chứng minh rằng: Khi M thay đổi trên d thì CD luôn đi qua 1 điểm cố định.
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài với nhau tại A. Vẽ tiếp tuyến chung ngoài BC với B ∈ (O), C ∈ (O'). Đường vuông góc với OO' kẻ từ A cắt BC ở M
a, Tính MA theo R và r
b, Tính diện tích tứ giác BCO'O theo R và r
c, Tính diện tích ∆BAC theo R và r
d, Gọi I là trung điểm của OO'. Chứng minh rằng BC là tiếp tuyến của đường tròn (I; IM)