ĐKXĐ: \(x;y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=6\\xy\left(x+y\right)=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y+2\sqrt{xy}\right)=36\\xy\left(x+y\right)=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)+2xy\sqrt{xy}=36\\xy\left(x+y\right)=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\sqrt{xy}=8\\xy\left(x+y\right)=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=4\\xy\left(x+y\right)=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=4\\x+y=5\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;4\right);\left(4;1\right)\)