Thúy Hiền Mai

Giúp t câu 1,2,3 vs!! Cảm ơn nhìu ạ

Trần Tuấn Hoàng
13 tháng 8 2022 lúc 21:39

Bài 2:

- Áp dụng bất đẳng thức Caushy, ta có:

\(\dfrac{1}{\sqrt[3]{\left(a+3b\right).1.1}}+\dfrac{1}{\sqrt[3]{\left(b+3c\right).1.1}}+\dfrac{1}{\sqrt[3]{\left(c+3a\right).1.1}}\)

\(\ge\dfrac{1}{\dfrac{a+3b+1+1}{3}}+\dfrac{1}{\dfrac{b+3c+1+1}{3}}+\dfrac{1}{\dfrac{c+3a+1+1}{3}}\)

\(=3\left(\dfrac{1}{a+3b+2}+\dfrac{1}{b+3c+2}+\dfrac{1}{c+3a+2}\right)\left(1\right)\)

- Áp dụng bất đẳng thức Caushy-Schwarz dạng Engel, ta có:

\(3\left(\dfrac{1}{a+3b+2}+\dfrac{1}{b+3c+2}+\dfrac{1}{c+3a+2}\right)\)

\(\ge3.\dfrac{\left(1+1+1\right)^2}{a+3b+2+b+3c+2+c+3a+2}\)

\(=\dfrac{27}{4\left(a+b+c\right)+6}\)

\(=\dfrac{27}{4.\dfrac{3}{4}+6}=3\left(2\right)\)

- Từ (1), (2) ta suy ra đpcm.

- Dấu "=" xảy ra khi \(a=b=c=1\)

 

Bình luận (1)
Trần Tuấn Hoàng
13 tháng 8 2022 lúc 22:01

Bài 1:

- Áp dụng bất đẳng thức Caushy ta có:

\(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\sqrt[3]{1^2}=3\)

- Ta có:\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\)

\(=\dfrac{a^4}{abc+2ab}+\dfrac{b^4}{abc+2bc}+\dfrac{c^4}{abc+2ca}\)

- Áp dụng bất đẳng thức Caushy-Schwarz dạng Engel, ta có:

\(\dfrac{a^4}{abc+2ab}+\dfrac{b^4}{abc+2bc}+\dfrac{c^4}{abc+2ca}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)+3abc}\)

hay \(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\)\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)+3abc}\left(1\right)\)

Mặt khác: \(ab+bc+ca\le a^2+b^2+c^2\left(2\right)\)

- Từ (1), (2):

\(\Rightarrow\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)+3abc}=\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)+3}\)- Đặt \(a^2+b^2+c^2=x\ge3\). Khi đó ta có:

\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\ge\dfrac{x^2}{2x+3}\)

- Ta có: \(\dfrac{x^2}{2x+3}=\dfrac{x^2+\dfrac{3}{2}x-\dfrac{3}{2}x-\dfrac{9}{4}+\dfrac{9}{4}}{2x+3}\)

\(=\dfrac{\dfrac{1}{2}x\left(2x+3\right)-\dfrac{3}{4}\left(2x+3\right)+\dfrac{9}{4}}{2x+3}\)

\(=\dfrac{x}{2}-\dfrac{3}{4}+\dfrac{9}{4\left(2x+3\right)}\)

\(=\left[\dfrac{2x+3}{36}+\dfrac{9}{4\left(2x+3\right)}\right]+\dfrac{x}{2}-\dfrac{x}{18}-\dfrac{3}{4}-\dfrac{1}{12}\)

\(=\left[\dfrac{2x+3}{36}+\dfrac{9}{4\left(2x+3\right)}\right]+\dfrac{4}{9}x-\dfrac{5}{6}\left(3\right)\)

- Áp dụng bất đẳng thức Caushy ta có:

\(\left[\dfrac{2x+3}{36}+\dfrac{9}{4\left(2x+3\right)}\right]+\dfrac{4}{9}x-\dfrac{5}{6}\)

\(\ge2\sqrt{\dfrac{2x+3}{36}.\dfrac{9}{4\left(2x+3\right)}}+\dfrac{4}{9}.3-\dfrac{5}{6}\)

\(=2.\dfrac{1}{4}+\dfrac{4}{3}-\dfrac{5}{6}=1\left(4\right)\)

- Từ (3), (4) \(\Rightarrow\dfrac{x^2}{2x+3}\ge1\)

\(\Rightarrow\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\ge\dfrac{x^2}{2x+3}\ge1\left(đpcm\right)\)

- Dấu "=" xảy ra khi \(a=b=c=1\)

 

 

 

 

 

 

Bình luận (0)
missing you =
13 tháng 8 2022 lúc 22:09

\(1;\)

\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b}{3}+\dfrac{c+2}{9}\ge3\sqrt[3]{\dfrac{a^3}{3.9}}=a\Rightarrow\dfrac{a^3}{b\left(c+2\right)}\ge a-\dfrac{b}{3}-\dfrac{c+2}{9}\)

\(tương\) \(tự\Rightarrow\dfrac{b^3}{c\left(a+2\right)}\ge b-\dfrac{c}{3}-\dfrac{a+2}{3};\dfrac{c^3}{a\left(b+2\right)}\ge c-\dfrac{a}{3}-\dfrac{b+2}{3}\)

\(\Rightarrow\Sigma\dfrac{a^3}{b\left(c+2\right)}\ge a+b+c-\left(\dfrac{2\left(a+b+c\right)}{3}\right)=\dfrac{a+b+c}{3}\ge\dfrac{3\sqrt[3]{abc}}{3}=1\)

\(dấu:="\Leftrightarrow a=b=c=1\)

Bình luận (0)
Trần Tuấn Hoàng
14 tháng 8 2022 lúc 9:16

Bài 3:

- Áp dụng bất đẳng thức Caushy, ta có:

\(\dfrac{ab}{1-c^2}+\dfrac{bc}{1-a^2}+\dfrac{ca}{1-b^2}\)

\(\le\dfrac{\dfrac{\left(a+b\right)^2}{4}}{\left(1-c\right)\left(1+c\right)}+\dfrac{\dfrac{\left(b+c\right)^2}{4}}{\left(1-a\right)\left(1+a\right)}+\dfrac{\dfrac{\left(c+a\right)^2}{4}}{\left(1-b\right)\left(1+b\right)}\)

\(=\dfrac{1}{4}\left[\dfrac{\left(a+b\right)^2}{\left(a+b\right)\left(1+c\right)}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)\left(1+a\right)}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)\left(1+b\right)}\right]\)

\(=\dfrac{1}{4}\left(\dfrac{a+b}{1+c}+\dfrac{b+c}{1+a}+\dfrac{c+a}{1+b}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{1-c}{1+c}+\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}\right)\)

\(=\dfrac{1}{4}\left[3-2.\left(\dfrac{c}{1+c}+\dfrac{a}{1+a}+\dfrac{b}{1+b}\right)\right]\left(1\right)\)

- Ta có: \(\dfrac{c}{1+c}+\dfrac{a}{1+a}+\dfrac{b}{1+b}\)

\(=1-\dfrac{1}{1+c}+1-\dfrac{1}{1+a}+1-\dfrac{1}{1+b}\)

\(=3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\)

- Áp dụng bất đẳng thức Caushy-Schwarz dạng Engel, ta có:

\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c+3}=\dfrac{9}{1+3}=\dfrac{9}{4}\)

- Khi đó ta có: \(\dfrac{c}{1+c}+\dfrac{a}{1+a}+\dfrac{b}{1+b}\le3-\dfrac{9}{4}=\dfrac{3}{4}\left(2\right)\)

- Từ (1), (2) suy ra:

\(\dfrac{ab}{1-c^2}+\dfrac{bc}{1-a^2}+\dfrac{ca}{1-b^2}\le\dfrac{1}{4}.\left(3-2.\dfrac{3}{4}\right)=\dfrac{3}{8}\left(đpcm\right)\)

- Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
Phạm Ngọc Trinh
Xem chi tiết
Trần Ngoc
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
Dung Thi My Tran
Xem chi tiết
Chu Giang
Xem chi tiết
Dung Thi My Tran
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
Chans
Xem chi tiết
Roseeee
Xem chi tiết