\(\text{Δ}=\left(m-1\right)^2-4\left(m+6\right)\)
\(=m^2-2m+1-4m-24\)
\(=m^2-6m-23\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow\left(-m+1\right)^2-2\left(m+6\right)=0\)
\(\Leftrightarrow m^2-2m+1-2m-12=0\)
\(\Leftrightarrow m^2-4m+4=17\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{17}+2\\m=-\sqrt{17}+2\end{matrix}\right.\)