(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
d: \(\Leftrightarrow\left(4x+2\right)\left(x-1\right)-\dfrac{1}{2}x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+2-\dfrac{1}{2}x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-\dfrac{7}{2}x+2\right)=0\)
=>x=1 hoặc x=4/7
e: \(\Leftrightarrow2\left(5x-2\right)=3\left(5-3x\right)\)
=>10x-4=15-9x
=>19x=19
hay x=1
f: \(\Leftrightarrow\dfrac{2x-1}{x-1}+1=\dfrac{1}{x-1}\)
=>2x-1+x-1=1
=>3x-2=1
hay x=1(loại)
g: =>1+3x-6=3-x
=>3x-5-3+x=0
=>4x-8=0
=>x=2(loại)