a)lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
=lim \(\frac{\sqrt{1-\frac{4}{n}}-\sqrt{\frac{4}{n}+\frac{1}{n^2}}}{\sqrt{3+\frac{1}{n^2}}+1}=\frac{1}{\sqrt{3}+1}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
= lim \(\frac{\sqrt[3]{8+\frac{1}{n^3}}-1}{2-\frac{3}{n}}=\frac{2-1}{2}=\frac{1}{2}\)