a) Xét \(\Delta ABC:\)
\(BC^2=10^2=100\left(cm\right).\\ AB^2+AC^2=6^2+8^2=100\left(cm\right).\\ \Rightarrow AB^2+AC^2=BC^2.\)
\(\Rightarrow\Delta ABC\) vuông tại A.
b) M là trung điểm AB (gt).
\(\Rightarrow AM=BM=\dfrac{1}{2}AB=\dfrac{1}{2}6=3\left(cm\right).\)
Xét \(\Delta AMC\) vuông tại A:
\(CM^2=AM^2+AC^2\left(Pytago\right).\\ \Rightarrow CM^2=3^2+8^2.\\ \Rightarrow CM=\sqrt{73}\left(cm\right).\)
c) BD // AC (gt).
\(\Rightarrow\widehat{MAC}=\widehat{MBD}=90^o\left(Soletrong\right).\)
Xét \(\Delta MAC\) và \(\Delta MBD:\)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh).
\(\widehat{MAC}=\widehat{MBD}\left(cmt\right).\\ AM=BM\left(cmt\right).\)
\(\Rightarrow\Delta MAC=\Delta MBD\left(g-c-g\right).\)
\(\Rightarrow AC=BD\) (2 cạnh tương ứng).