a: XétΔABM và ΔADM có
AB=AD
\(\widehat{BAM}=\widehat{DAM}\)
AM chung
Do đó: ΔABM=ΔADM
Suy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
\(\widehat{ADK}=\widehat{ABC}\)
AD=AB
\(\widehat{DAK}\) chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔBMK và ΔDMC có
MB=MD
\(\widehat{MBK}=\widehat{MDC}\)
BK=DC
Do đó:ΔBMK=ΔDMC
Suy ra: MK=MC
d: Ta có: AK=AC
nên A nằm trên đường trung trực của CK(1)
Ta có; MK=MC
nên M nằm trên đường trung trực của CK(2)
Ta có: EK=EC
nên E nằm trên đường trung trực của CK(3)
Từ (1), (2) và (3) suy ra A,M,E thẳng hàng