i) Ta có: \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1\)
=1
Bài 4:
a) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2-12x\)
\(=x^2+6x+9-x^2+6x-9-12x\)
=0
b) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)
\(=x^2-4x+4-x^2+4x-3\)
=1
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x^3\)
\(=x^3-27-x^3\)
=-27
d) Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)+9x\)
\(=27x^3+8-27x^3-9x+9x\)
=8