Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Giúp em với huhu

Đặt biến phụ dạng đẳng cấp \( ax^2 + bxy + cy^2 \).

Bài 1. Phân tích các đa thức sau thành nhân tử:

a) \((x^2 + 1)^2 + 3x(x^2 + 1) + 2x^2\) \hspace{1cm} \(t = x^2 + 1\)

b) \((x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2\)

c) \(4(x^2 + x + 1)^2 + 5x(x^2 + x + 1) + x^2\) \hspace{1cm} \(t = x^2 + x + 1\)

d) \((x^2 - x + 2)^4 - 3x^2(x^2 - x + 2) + 2x^4\) \hspace{1cm} \(t = (x^2 - x + 2)\)

e) \((x^2 - x - 1)^4 + 7x^2(x^2 - x - 1)^2 + 12x^4\) \hspace{1cm} \(t = (x^2 - x + 1)^2\)

f) \(10(x^2 - 2x + 3)^4 - 9x^2(x^2 - 2x + 3)^2 - x^4\) \hspace{1cm} \(t = (x^2 - 2x + 3)^2\)

a: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+2x+1\right)=\left(x^2+x+1\right)\left(x+1\right)^2\)

b: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+4x+8+x\right)+2x\left(x^2+4x+8+x\right)\)

\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

\(=\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)

c: ,\(4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2\)

\(=4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)+x\left(x^2+x+1\right)+x^2\)

\(=4\left(x^2+x+1\right)\left(x^2+x+1+x\right)+x\left(x^2+x+1+x\right)\)

\(=4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)\)

\(=\left(x^2+2x+1\right)\left\lbrack4\left(x^2+x+1\right)+x\right\rbrack\)

\(=\left(x+1\right)^2\cdot\left(4x^2+5x+4\right)\)

d: \(\left(x^2-x+2\right)^4-3x^2\left(x^2-x+2\right)^2+2x^4\)

\(=\left(x^2-x+2\right)^4-x^2\cdot\left(x^2-x+2\right)^2-2x^2\left(x^2-x+2\right)^2+2x^4\)

\(=\left(x^2-x+2\right)^2\cdot\left\lbrack\left(x^2-x+2\right)^2-x^2\right\rbrack-2x^2\left\lbrack\left(x^2-x+2\right)^2-x^2\right\rbrack\)

\(=\left\lbrack\left(x^2-x+2\right)^2-x^2\right\rbrack\left\lbrack\left(x^2-x+2\right)^2-2x^2\right\rbrack\)

\(=\left(x^2-x+2-x\right)\left(x^2-x+2+x\right)\left\lbrack x^4+x^2+4-2x^3+4x^2-4x-2x^2\right\rbrack\)

\(=\left(x^2-2x+2\right)\left(-x+2\right)\left(x^4-2x^3+3x^2-4x+4\right)\)

e: \(\left(x^2-x-1\right)^4+7x^2\left(x^2-x-1\right)^2+12x^4\)

\(=\left(x^2-x-1\right)^4+3x^2\left(x^2-x-1\right)^{^2}+4x^2\left(x^2-x-1\right)^2+12x^4\)

\(=\left(x^2-x-1\right)^2\left\lbrack\left(x^2-x-1\right)^2+3x^2\right\rbrack+4x^2\left\lbrack\left(x^2-x-1\right)^2+3x^2\right\rbrack\)

\(=\left\lbrack\left(x^2-x-1\right)^2+3x^2\right\rbrack\left\lbrack\left(x^2-x-1\right)^2+4x^2\right\rbrack\)

f: \(10\left(x^2-2x+3\right)^4-9x^2\left(x^2-2x+3\right)^2-x^4\)

\(=10\left(x^2-2x+3\right)^4-10x^2\left(x^2-2x+3\right)^2+x^2\left(x^2-2x+3\right)^2-x^4\)

\(=10\left(x^2-2x+3\right)^2\left\lbrack\left(x^2-2x+3\right)^2-x^2\right\rbrack+x^2\left\lbrack\left(x^2-2x+3\right)^2-x^2\right\rbrack\)

\(=\left\lbrack\left(x^2-2x+3\right)^2-x^2\right\rbrack\left\lbrack10\left(x^2-2x+3\right)^2+x^2\right\rbrack\)

\(=\left(x^2-2x+3-x\right)\left(x^2-2x+3+x\right)\left\lbrack10\left(x^2-2x+3\right)^2+x^2\right\rbrack\)

\(=\left(x^2-3x+3\right)\left(x^2-x+3\right)\left\lbrack10\left(x^2-2x+3\right)^2+x^2\right\rbrack\)


Các câu hỏi tương tự
linhnhi
Xem chi tiết
LÂM 29
Xem chi tiết
An Vu
Xem chi tiết
Ngô Lan Chi
Xem chi tiết
nguyễn ngọc linh
Xem chi tiết
Qúy Nguyễn Phú
Xem chi tiết
Chu Dat
Xem chi tiết
Linh Nhi
Xem chi tiết
Chu Dat
Xem chi tiết
Chu Dat
Xem chi tiết