\(\dfrac{x-1}{4}>\dfrac{x+2}{3}+\dfrac{x}{6}\)
=>\(\dfrac{3x-3}{12}>\dfrac{4x+8}{12}+\dfrac{2x}{12}\)
=>3x-3>6x+8
=>-3x>11
=>\(x< -\dfrac{11}{3}\)
\(\dfrac{x-1}{4}>\dfrac{x+2}{3}+\dfrac{x}{6}\)
=>\(\dfrac{3x-3}{12}>\dfrac{4x+8}{12}+\dfrac{2x}{12}\)
=>3x-3>6x+8
=>-3x>11
=>\(x< -\dfrac{11}{3}\)
Giair bất phương trình
\(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\)
Giải bất phương trình sau
a)\(\dfrac{2-x}{3}\)\(-x-2\le\dfrac{x-17}{2}\)
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
a) giải phương trình: 8x-3=5x+12
b) giải bất phương trình sau và biểu diễn tập hợp nghiệm trên trục số: \(\dfrac{8-11x}{4}\)< 13
c) Chứng minh rằng: (\(\dfrac{x}{x^2-36}\)- \(\dfrac{x-6}{x^2+6x}\)): \(\dfrac{2x-6}{x^2+6x}\)+ \(\dfrac{x}{6-x}\)= 1
giair các phương trình sau
a)\(\dfrac{3}{1-x}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)
câu 1 Có bao nhiêu giá trị nguyên của x thỏa mãn cả hai bất phương trình sau:
\(\dfrac{x+2}{5}-\dfrac{3x-7}{4}>-5\)
và \(\dfrac{3x}{5}-\dfrac{x-4}{3}+\dfrac{x+2}{6}>6\)
a, 3 b,1 c,4 d,2
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
1)\(\dfrac{x+2}{3}>\dfrac{x}{2}+\dfrac{1}{6}\)
2) 2x(6x-1)>(3x-2)(4x+3)
3) \(\dfrac{2\left(x+1\right)}{3}\)-2≥\(\dfrac{x-2}{2}\)
4)2-5x≤17
5) \(\dfrac{x+2}{5}-\dfrac{x-2}{3}\) <2
6) \(\dfrac{x+2}{3}< \dfrac{3-2x}{5}\)
7)\(\dfrac{4\left(x-1\right)}{3}-\dfrac{2-x}{15}\) <\(\dfrac{10x-3}{5}\)
8) 2x-\(\dfrac{x+2}{3}\) <\(\dfrac{3\left(x-2\right)}{2}\)+5-x
9) 2x-3(x+1)>6x+3(x-5)
10) \(\dfrac{2x+3}{7}\) >\(\dfrac{x-5}{4}\)
giúp mik giải bài này vs mik đag cần gấp mik c.ơn
Giải các bất phương trình sau
a) (x-4)2<x(x-8)
b) x+\(\dfrac{1}{2}\)\(\overset{>}{-}\)\(\dfrac{3-5x}{-3}\)
c) \(\dfrac{x-7}{-4}\)\(\overset{< }{-}\)\(\dfrac{4-2x}{-3}\)
giải các bất phương sau và biểu diễn tập nghiệm trên trục số
a)\(\dfrac{x-1}{6}-\dfrac{x+2}{4}< \dfrac{x+3}{2}-\dfrac{x-5}{3}\)
b)\(\dfrac{x-1}{x-2}>\dfrac{x-3}{x-4}\)
giải phương trình và bất phương trình sau:
a, \(\dfrac{3}{x-1}=\dfrac{4}{x+1}\)
b,(x-1).(x-3)=0
c, 2(x-1)+x=0
mọi người giúp mình với ạ
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
g) \(\dfrac{12x+1}{12}\) ≥ \(\dfrac{9x+3}{3}\) - \(\dfrac{8x+1}{4}\)
h) \(\dfrac{x-1}{2}\) + \(\dfrac{2-x}{3}\) ≤ \(\dfrac{3x-3}{4}\)
i) (2x - 3)2 > x(4x - 3)