\(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)
=>\(\left(2x+5\right)\left(x-4\right)-\left(x-4\right)\left(5-x\right)=0\)
=>\(\left(x-4\right)\left(2x+5-5+x\right)=0\)
=>\(3x\left(x-4\right)=0\)
=>x(x-4)=0
=>\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\left(2x-5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\\ \Leftrightarrow\left(2x-5\right)\left(x-4\right)-\left(x-4\right)\left(5-x\right)=0\\ \Leftrightarrow\left(x-4\right)\left[2x-5-\left(5-x\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left(2x-5-5+x\right)=0\\ \Leftrightarrow\left(x-4\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{10}{3}\end{matrix}\right.\)