=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
giải hệ pt \(\int^{x+y+xy=5}_{\left(x+1\right)^3+\left(y+1\right)^3=35}\)
giải pt \(\sqrt{\left(3+2\sqrt{2}\right)^x}+\sqrt{\left(3-2\sqrt{2}\right)^x}=6\)
Giải pt: \(\sqrt{1+\sqrt{1-x^2}}=\left[\left(\sqrt{1+x}\right)^3-\left(\sqrt{1-x}\right)^3\right]=2+\sqrt{1-x^2}\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
Giải pt:
\(4\left(x+1\right)\left(\sqrt{x+3}+\sqrt{2-x}\right)=-x^2+12x+13\)
giải pt\(\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
Áp dụng nội suy niu tơn để giải pt sau
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
giải pt: \(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)
giải pt \(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x2-x-2}\right)\)=3
giải pt
\(\left(\sqrt{x-1}+\sqrt{x+2}\right)\left(\sqrt{x^2+x-2}-1\right)=3\)
Giải pt:\(\sqrt[3]{\left(x+1^2\right)}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)\(=1\)