\(\sqrt{x+1}+\sqrt{x}=\frac{x+1-x}{\sqrt{x+1}-\sqrt{x}}=\frac{1}{\sqrt{x+1}-\sqrt{x}}\text{ }\left(\text{do }\sqrt{x+1}>\sqrt{x}\forall x>0\right)\)
\(pt\Leftrightarrow\frac{1}{\sqrt{x+1}-\sqrt{x}}=\frac{1}{\sqrt{x}}\Leftrightarrow\sqrt{x+1}-\sqrt{x}=\sqrt{x}\text{ }\)