\(x\left(x-1\right)\left(x+4\right)\left(x+5\right)=84\)
\(\Leftrightarrow\)\(\left(x^2+4x\right)\left(x^2+4x-5\right)-84=0\)
Đặt: \(x^2+4x=t\)ta có:
\(t\left(t-5\right)-84=0\)
\(\Leftrightarrow\)\(t^2-5t+\frac{25}{4}-\frac{361}{4}=0\)
\(\Leftrightarrow\)\(\left(t-\frac{5}{2}\right)^2-\frac{361}{4}=0\)
\(\Leftrightarrow\)\(\left(t-\frac{5}{2}-\frac{19}{2}\right)\left(t-\frac{5}{2}+\frac{19}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(t-12\right)\left(t+7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-12=0\\t+7=0\end{cases}}\)
Đến đây bn thay trở lại rồi tìm x nhé