ĐKXĐ: x>=2
\(C^2_{x+3}-A^2_x=x-4\)
=>\(\dfrac{\left(x+3\right)!}{\left(x+3-2\right)!\cdot2!}-\dfrac{x!}{\left(x-2\right)!}=x-4\)
=>\(\dfrac{\left(x+2\right)\left(x+3\right)}{2}-x\left(x-1\right)=x-4\)
=>\(\left(x+2\right)\left(x+3\right)-2x\left(x-1\right)=2x-8\)
=>\(x^2+5x+6-2x^2+2x-2x+8=0\)
=>\(-x^2+5x+14=0\)
=>\(x^2-5x-14=0\)
=>(x-7)(x+2)=0
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Đề là \(C_{x+3}^2-A_x^2=x-4\) đúng ko em?