\(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2+2x+3}=a\\2x+1=b\end{cases}}\)
Thì ta có:
\(a^2+2b-4=ab\)
\(\Leftrightarrow\left(2-a\right)\left(b-a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=b-2\end{cases}}\)
Với a = 2
\(\Leftrightarrow\sqrt{x^2+2x+3}=2\)
\(\Leftrightarrow x^2+2x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\end{cases}}\)
Với a = b - 2
\(\Leftrightarrow\sqrt{x^2+2x+3}=2x-1\)
Bình phương rồi giải tiếp sẽ ra.