giải pt \(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x2-x-2}\right)\)=3
giải pt: 5\(\sqrt{x^3+1}\)=2(x2+2)
Cho pt ẩn x : x2 - 5x + m - 2 = 0 (1)
a) Giải pt (1) khi m = -4
b) Tìm m để pt có 2 nghiệm dương phân biệt x1 , x2 thoả mãn hệ thức:
\(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
Giải pt:
1) x - 2\(\sqrt{x - 1}\) = 16
2) \(\sqrt{1\:-\:x}\) - \(\sqrt{x - 3}\) = 0
3) \(\sqrt{x - 4}\) + 2 = 7
4) x - \(\sqrt{x - 2\sqrt{x\:-\:1}}\) = 0
5) \(\sqrt{x - 2}\) - \(\sqrt{x^2 - 2x}\) = 0
6) \(\sqrt{3\:-\:2\sqrt{2}}\) - \(\sqrt{x^2 + 2x\sqrt{2}+2}\) = 0
giải pt \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\ge\dfrac{3}{2}\)
1.a Giải hệ pt 1.2(x+3)=3(y+1)+1 2.3(x-y+1)=2(x-2)=3
b) \(x^4-7x^2+6=0\)
2.Cho BT
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a. Rút gọn P
b.Tìm min P
c. Tìm x để BT Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị là số nguyên
3.Cho pt \(x^2-2\left(m+1\right)x+m-4=0\)
a.Cm pt có 2 nghiệm phân biệt. Tìm m để pt có 2 nghiệm dương
b. Gọi x1,x2 là 2 nghiệm phương trình Tìm min M\(=\frac{x1^2+x2^2}{x1\left(1-x2\right)+x2\left(1-x1\right)}\)
GIẢI PT
\(\sqrt{x^2+10x+25}=4\)
\(\sqrt{x-2}+3=5\)
\(\sqrt{x^2-x+4}-x^2+x-2=0\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{1}{3}\)
1. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
2. Giải pt:
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
giải pt: \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)