ĐKXĐ:\(9x^2+16x+32 ≥ 0 <=>(9x^2+12x+4)+4x+28≥0 <=>(3x+2)^2+4x+28 ≥0\)
Mà \((3x+2)^2 ≥0\)
\(=>4x+28 ≥0 =>x ≥-7\)
Phương trình\(<=> \)\((3x-16y-24)^2=9x^2+16x+32\)
Ta có:\(9x^2+16x+32=(3x+2)^2+4x+28 ≥(3x+2)^2\)
ĐKXĐ:\(9x^2+16x+32 ≥ 0 <=>(9x^2+12x+4)+4x+28≥0 <=>(3x+2)^2+4x+28 ≥0\)
Mà \((3x+2)^2 ≥0\)
\(=>4x+28 ≥0 =>x ≥-7\)
Phương trình\(<=> \)\((3x-16y-24)^2=9x^2+16x+32\)
Ta có:\(9x^2+16x+32=(3x+2)^2+4x+28 ≥(3x+2)^2\)
a,giải phương trình nghiệm nguyên
x2(y-1)+y2(x-1)=1
b, tìm tất cả nghiệm nguyên của pt
3x-16y-24=\(\sqrt{9x^2+16x+32}\)
Tìm tất cả các nghiệm nguyên của phương trình \(3x-16y-24=\sqrt{9x^2+16x+32}\)
giải pt nghiệm nguyên sau: \(\sqrt{9x^2+16x+96}\)=3x\(^2\)-16x-24
Tìm các số nguyên x,y thỏa mãn \(\sqrt{9x^2+16x+96}+16y=3x-24\)
tìm nghiệm nguyên của phương trình
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
các bản giải chi tiết ra giùm mình nha! khúc nào mà kiến thức vi diệu quá ấy , thì các bạn ghi lời giải thích giùm mình.
cảm ơn các bạn nhiều !!!!
(Nghi binh 25/09)
Dạo này bận nhiều nên cho tàm tạm:
Câu 1:
Tìm tất cả các nghiệm nguyên của phương trình: \(3x-16y-24=\sqrt{9x^2+16x+32}\)
Câu 2: Cho ba số a,b,c đôi một khác nhau, c khác 0. Chứng minh rằng nếu hai phương trình \(x^2+ax+bc=0\)
và \(x^2+bx+ca=0\)có đúng một nghiệm chung thì các nghiệm còn lại của chúng thỏa mãn phương trình: \(x^2+cx+ab=0\).
\(\text{Giải PT: }\sqrt{5-x}-\sqrt{3x+1}=8x^2+16x-24\)
Giải pt : \(\sqrt{5-x}-\sqrt{3x+1}=8x^2+16x-24\)
Giải phương trình sau
a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)
b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)