\(\sqrt{2}\left(cos^4x-sin^4x\right)=sinx+cosx\)
\(\Leftrightarrow\sqrt{2}\left(cos^2x+sin^2x\right)\left(cosx-sinx\right)\left(cosx+sinx\right)=sinx+cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left[\sqrt{2}\left(cosx-sinx\right)-1\right]=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\left[2cos\left(x+\dfrac{\pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=k\pi\\x+\dfrac{\pi}{4}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...