Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Bích Ngọc

giải pt: \(2x^2+x+\sqrt{x^2+3}+2x.\sqrt{x^2+3}=9\)

Thắng Nguyễn
6 tháng 7 2017 lúc 13:32

\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}=9\)

\(\Leftrightarrow2x^2+x-3+\left(\sqrt{x^2+3}-2\right)+\left(2x\sqrt{x^2+3}-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}+\frac{4x\left(x^2+3\right)-16}{2x\sqrt{x^2+3}+4}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}+\frac{4x^3+12x-16}{2x\sqrt{x^2+3}+4}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x-1\right)\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}\right)=0\)

Dễ thấy: \(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}>0\)

Nên x-1=0 suy ra x=1

Rau
6 tháng 7 2017 lúc 13:49

Không có ĐK của x làm sao mà khẳng đinh cái kia >0 đ.c
Nếu 2x+3 và x+1 <0 thì sao nhỉ @@
@Thắng Nguyễn

Rau
6 tháng 7 2017 lúc 13:55

Mình xin trình bày cách làm của mình :))
\(x^2+2x\sqrt{x^2+3}+x^2+3+x+\sqrt{x^2+3}=9+3=12 \)
\(\left(x+\sqrt{x^2+3}\right)^2+\left(x+\sqrt{x^2+3}\right)-12=0\)
\(\orbr{\begin{cases}x+\sqrt{x^2+3}=3\\x+\sqrt{x^2+3}=-4\end{cases}}\)
Bạn tự làm tiếp... Chuyển vế và bình phương. Thử lại ^^


Các câu hỏi tương tự
Đỗ Minh Quang
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Huy Trần
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Lizy
Xem chi tiết
Tô Thu Huyền
Xem chi tiết
Nguyên Hoàng
Xem chi tiết
Tô Thu Huyền
Xem chi tiết