\(x^2+2x-28+8-\sqrt{2x^2+4x+8}=0\)
\(x^2+2x-28+\frac{64-2x^2-4x-8}{8+\sqrt{2x^2+4x+8}}=0\)
\(x^2+2x-28+\frac{-2\left(x^2+2x-28\right)}{8+\sqrt{2x^2+4x+8}}=0\)
\(\left(x^2+2x-28\right)\left(1-\frac{2}{8+\sqrt{2x^2+4x+8}}\right)=0\)
mà \(1-\frac{2}{8+\sqrt{2x+4x+8}}\ne0\Rightarrow x^2+2x-28=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1-\sqrt{29}\\x=-1+\sqrt{29}\end{cases}}\)