Đề bài là \(\left(x^2+4x+1\right)^2+4\left(x^2+4x+1\right)=x-1\) có đúng không nhỉ?
Vì đề bài thế này thì vế trái người ta sẽ cộng luôn thành \(5\left(x^2+4x+1\right)\)
(x2+4x+1)+4(x2+4x+1)=x−1
<=>5.(x^2+4x+1)=x-1
<=>5x^2+20x+5-x+1=0
<=>5.x^2+19x+6=0
có \(\Delta\)=19^2-4.5.6=241>0
vậy phương trình có 2 nghiệm phân biệt:
x1=-(19-√241)/10
x2=-(19+√241)/10