\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
<=> \(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=2\)
<=> \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt: \(x^2+5x+4=t\) ta có phương trình:
\(t\left(t+2\right)=24\)
<=> \(t^2+2t-24=0\)
<=> t = 4 hoặc t = -6
Với t = 4 ta có: \(x^2+5x+4=4\)<=> x = 0 hoặc x = - 5
Với t = - 6 ta có: \(x^2+5x+4=-6\) phương trình vô nghiệm
Vậy x = 0 hoặc x = -5
[(x+1).(x+4].[(x+2).(x+3)] =24
<-> (x2+4X+X+4).(x2+3x+2x+6)=24
<-> (x2+5x+4).(x2+5x+6)=24
đặt x2+5x+4=a
<-> a.(a+2)=24
<-> a2+2a-24+0
ta có \(\Delta\)= 22-4.1.(-24)
=4+96
=100 >0
-> \(\sqrt{\Delta}\)=\(\sqrt{100}\)=10
=> pt có 2 nghiệm pb
x1= \(\frac{2+10}{2}\)=6
x2=\(\frac{2-10}{2}\)=-4