giải các phương trình sau:
a, \(\sqrt{x^2-1}=x-2\)
b, \(\frac{5}{\sqrt{2x^2+1}}=1\)
c, \(\sqrt{x^2}+\sqrt{x^2-2x+1}=2\)
d, \(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)
Bài 3 giải phương trình :
a ) \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
b ) \(\sqrt{x^2-4x+4}=2\)
c ) \(\sqrt{x^2-6x+9}=x-2\)
d ) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
e ) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f ) \(x+\sqrt{2x+15}=0\)
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)
Giải phương trình
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
c, \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
d, \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
giải phương trình
a. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b.\(\sqrt{x-2010}+\sqrt{y-2011}+\sqrt{x+2012}=\frac{1}{2}\left(x+y+z\right)-300\)
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-5}+2=0\)
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
giúp dùm đi mấy pạn
\(Q=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
a. Rút gọn Q
b. Tìm x để Q >\(\frac{1}{2}\)
c. Tìm x thuộc Z để Q thuộc Z
Gải phương trình
a, \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=\)4
b, \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)= \(2\sqrt{2}\)
1) Giải phương trình
a) \(\sqrt{2}.x-\sqrt{98}=0\)
b ) \(\sqrt{2x}=\sqrt{8}\)
c) \(\sqrt{5}.x^2=\sqrt{20}\)
d) \(2x^2-\sqrt{100}=0\)
2) Tính
a) \(\sqrt{\frac{4}{\left(2-\sqrt{3}\right)^2}}+\sqrt{\frac{9}{\left(2+\sqrt{3}\right)^2}}\)