`\sqrt{2x+3}+\sqrt{x+1}=3x-2+2\sqrt{2x^2+5x+3}` (ĐK: `x>=-1)`
`<=>\sqrt{2x+3}+\sqrt{x+1}=3x-2+2\sqrt{2x+3}*\sqrt{x+1}`
`<=>\sqrt{2x+3}+\sqrt{x+1}=(2x+3)+2\sqrt{2x+3}*\sqrt{x+1}+(x+1)-6`
`<=>\sqrt{2x+3}+\sqrt{x+1}=(\sqrt{2x+3}+\sqrt{x+1})^2-6`
Đặt: `t=\sqrt{2x+3}+\sqrt{x+1}(t>=0)` ta được pt:
`t=t^2-6`
`<=>t^2-t-6=0`
`<=>(t-3)(t+2)=0`
`<=>t=3(tm)` hoặc `t=-2(L)`
Suy ra: `\sqrt{2x+3}+\sqrt{x+1}=3`
`<=>2x+3+2\sqrt{(2x+3)(x+1)}+x+1=9`
`<=>2\sqrt{2x^2+5x+3}=5-3x`
`<=>4(2x^2+5x+3)=(5-3x)^2=9x^2-30x+25`
`<=>8x^2+20x+12=9x^2-30x+25`
`<=>x^2-50x+13=0`
`<=>x=25-6\sqrt{17}(tm)` và `x=25+6\sqrt{17}(tm)`
Vậy: `...`