Tham khảo thử đúng không nha mn
\(x^2+x-y^2=0\)
⇔ \(\left(x^2-y^2\right)+x=0\)
⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)
⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)
⇒ \(x=y=0\)
\(\Leftrightarrow x^2+x=y^2\)
\(\Leftrightarrow4x^2+4x=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-1=\left(2y\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2y\right)^2=1\)
\(\Leftrightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=1\)
2x-2y+1 | -1 | 1 |
2x+2y+1 | -1 | 1 |
x | -1 | 0 |
y | 0 | 0 |
Vậy \(\left(x;y\right)=\left(0;0\right);\left(-1;0\right)\)