\(\left\{{}\begin{matrix}\dfrac{8}{x-1}+\dfrac{15}{y+2}=1\\\dfrac{1}{x-1}+\dfrac{1}{y+2}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x-1}+\dfrac{15}{y+2}=1\\\dfrac{8}{x-1}+\dfrac{8}{y+2}=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y+2}=\dfrac{1}{3}\\\dfrac{1}{x-1}+\dfrac{1}{y+2}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=21\\\dfrac{1}{x-1}=\dfrac{1}{12}-\dfrac{1}{21}=\dfrac{1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=19\\x=29\end{matrix}\right.\)