\(\Leftrightarrow\left\{{}\begin{matrix}15\sqrt{x-2}+10\sqrt{y+1}=35\\15\sqrt{x-2}-9\sqrt{y+1}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19\sqrt{y+1}=38\\3\sqrt{x-2}+2\sqrt{y+1}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=2\\3\sqrt{x-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(3;3\right)\)