\(A=\dfrac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}\cdot\dfrac{1}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{4}{\sqrt{3}-\sqrt{2}}=4\sqrt{3}+4\sqrt{2}\)
\(A=\dfrac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}\cdot\dfrac{1}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{4}{\sqrt{3}-\sqrt{2}}=4\sqrt{3}+4\sqrt{2}\)
b3 : rút gọn
A=\(\sqrt{3+\sqrt{5+2\sqrt{3}}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
B= \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2}+\sqrt{2}}.\sqrt{2-\sqrt{2}+\sqrt{2}}\)
\(C=\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{1+x}\right):\dfrac{\sqrt{x}-1}{1+x}\)
a) Rút gọn C
b) x > 1. Tìm \(\sqrt{x}\cdot C\)
rút gọn biểu thức
A=\(\sqrt{3-\sqrt{5-2\sqrt{3}}}-\sqrt{3+\sqrt{5+2\sqrt{3}}}\)
Giải:
\(\left\{{}\begin{matrix}3\sqrt{x-2}+2\sqrt{y+1}=7\\5\sqrt{x-2}-3\sqrt{y+1}=-1\end{matrix}\right.\)
b4 : rút gọn
A=\(\sqrt{7-\sqrt{27}}+\sqrt{7+\sqrt{24}}\)
B= \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
bài 2 : cho x,y,z >0 thỏa mãn
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{\sqrt{xy}+}\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
B1 :tìm các giá trị của x để các biểu thức sau có nghĩa
a)A=\(\dfrac{1}{1-\sqrt{x^2-3}}\)
b) B= 3\(-\sqrt{1-10x^2}\)
c) C=\(\sqrt{8x-x^2-15}\)
giúp mình với
\(\sqrt{x^2+x-5}+2\left(x+2\right)\left(x-1\right)=61\)
Tìm x
\(\dfrac{4}{5}x^2\left(\dfrac{x}{3}-\dfrac{1}{2}\right)-\left(\dfrac{1}{5}x-\dfrac{2}{3}\right)\left(\dfrac{4x^2}{3}+1\right)=\dfrac{22}{45}x^2\)