Áp dụng tc dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{5}=\dfrac{x-y+z}{3-5+5}=\dfrac{32}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}x=32\\y=\dfrac{160}{3}\\z=\dfrac{160}{3}\end{matrix}\right.\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{5}=\dfrac{x-y+z}{3-5+5}=\dfrac{32}{3}\)
\(\dfrac{x}{3}=\dfrac{32}{3}\Rightarrow x=32\\ \dfrac{y}{5}=\dfrac{32}{3}\Rightarrow y=\dfrac{160}{3}\\ \dfrac{z}{5}=\dfrac{32}{3}\Rightarrow z=\dfrac{160}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{5}=\dfrac{x-y+z}{3-5+5}=\dfrac{32}{3}\)
Do đó: x=32; \(y=z=\dfrac{160}{3}\)