b: \(\text{Δ}=\left[-\left(2m-1\right)\right]^2-4\cdot1\cdot\left(2m-2\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2>=0\)
=>Phương trình (1) luôn có nghiệm
c: Theo vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-1\\x_1x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)
\(x_1^2+x_2\left(2m-1\right)< =3m^2-4m+6\)
=>\(x_1^2+x_2\left(x_1+x_2\right)< =3m^2-4m+6\)
=>\(x_1^2+x_2^2+x_1x_2< =3m^2-4m+6\)
=>\(\left(x_1+x_2\right)^2-x_1x_2< =3m^2-4m+6\)
=>\(\left(2m-1\right)^2-\left(2m-2\right)-3m^2+4m-6< =0\)
=>\(4m^2-4m+1-2m+2-3m^2+4m-6< =0\)
=>\(m^2-2m-3< =0\)
=>(m-3)(m+1)<=0
=>-1<=m<=3