Giải hệ ptr sau bằng phương pháp cộng
a) \(\begin{cases} (\sqrt{3}+1)x+(\sqrt{3}-1)y=\sqrt{3}\\ 2\sqrt{3}x-2y=3\sqrt{3} +1 \end{cases} \)
b) \(\begin{cases} x\sqrt{3}+y\sqrt{2}=1\\ x\sqrt{2}+y\sqrt{3}=\sqrt{3} \end{cases} \)
c) \(\begin{cases} (x-1)(y-2)=(x+1)(y-3)\\ (x-5)(y+4)=(x-4)(y+1) \end{cases} \)
a: \(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)x+\left(\sqrt{3}-1\right)y=\sqrt{3}\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)^2\cdot x+\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)y=\sqrt{3}\left(\sqrt{3}+1\right)\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}\right)+2y=3+\sqrt{3}\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}+2\sqrt{3}\right)=3+\sqrt{3}+3\sqrt{3}+1\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\2y=2\sqrt{3}-3\sqrt{3}-1=-\sqrt{3}-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-\sqrt{3}-1}{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x\sqrt{3}+y\sqrt{2}=1\\x\sqrt{2}+y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\sqrt{6}+2y=\sqrt{2}\\x\sqrt{6}+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y-3y=\sqrt{2}-3\\x\sqrt{3}+y\sqrt{2}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=\sqrt{2}-3\\x\sqrt{3}=1-y\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-\sqrt{2}\left(3-\sqrt{2}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-3\sqrt{2}+2=3-3\sqrt{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x=\sqrt{3}-\sqrt{6}\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy-2y-y+2=xy-3x+y-3\\xy+4x-5y-20=xy+x-4y-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-y+2=-3x+y-3\\4x-5y-20=x-4y-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-y+3x-y=-3-2=-5\\4x-5y-x+4y=-4+20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=-5\\3x-y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=-15\\3x-y=16\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-5y=-15-16=-31\\x-2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{31}{5}\\x=-5+2y=-5+\dfrac{62}{5}=\dfrac{37}{5}\end{matrix}\right.\)