Lời giải:
Đặt $\frac{1}{x+y}=a; \frac{1}{y-1}=b$ thì hpt trở thành:
\(\left\{\begin{matrix}
4a+b=5\\
a-2b=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
8a+2b=10\\
a-2b=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
8a+2b+a-2b=9\\
a-2b=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
a=1\\
b=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{x+y}=1\\ \frac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y=1\\ y-1=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=-1\end{matrix}\right.\)