\(\left\{{}\begin{matrix}4x+5y=6\\x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=6\\4x-12y=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=-14\\x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-14}{17}\\x-3.\left(\dfrac{-14}{17}\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-14}{17}\\x=\dfrac{43}{17}\end{matrix}\right.\)
Vậy hpt có no \(S=\left\{\dfrac{43}{17};\dfrac{-14}{17}\right\}\)
4x + 5y = 6 (1)
x - 3y = 5
⇔ x = 5 + 3y (2)
Thế (2) vào (1), ta có:
4(5 + 3y) + 5y = 6
⇔ 20 + 12y + 5y = 6
⇔ 17y = 6 - 20
⇔ 17y = -14
⇔ y = -14/17
Thế y = -14/17 vào (2), ta có:
x = 5 + 3.(-14/17)
⇔ x = 43/17
Vậy S = {(43/17; -14/17)}