b: \(=x^2-6+3x-4=x^2+3x-10=\left(x+5\right)\left(x-2\right)\)
c: \(=\left(x-y\right)^2+2\left(x-y\right)=\left(x-y\right)\left(x-y+2\right)\)
\(b,=x^2-6+3x-4\\ =x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x+2\right)\left(x-5\right)\\ c,=\left(x-y\right)^2+2\left(x-y\right)=\left(x-y\right)\left(x-y+2\right)\)
b.x\(^2\)-6+3x-4
<=>(x\(^2\)+3x)+(-6-4)
<=>x(x+3)-10
<=>(x-10)(x+3)
<=>\(\left[{}\begin{matrix}x=10\\x=-3\end{matrix}\right.\)
b)= \(x^2-(6-3x)-4\)
=\(x^2-6+3x-4\)
=\(x^2+(-6-4)+3x\)
=\(x^2-10+3x\)
b)= x2- (6 - 3x) -4
= x2- 6 +3x - 4
= x2 + 3x - 10
= x2 - 5x + 2x - 10
= (x2 - 5x) + (2x - 10)
= x(x - 5) + 2(x - 5)
= (x+2) (x - 5)
c) = (x - y)2 + 2(x - y) = (x - y) (x - y + 2)